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Abstract

Two linear eddy-viscosity models, the v2–f and k–x models, have been combined with an algebraic structure-based algorithm for the
evaluation of the Reynolds stresses. This closure was originally designed as an integral part of the algebraic structure-based model
(ASBM) to capture the turbulent anisotropy occurring in rotating wall bounded flows. It is shown that the algebraic structure-based
evaluation of the Reynolds stresses can be used directly with conventional turbulence models sensitizing them to rotation. Significant
improvement in the prediction of anisotropic turbulent flow can be achieved without an additional tuning of the closure coefficients.

The models are evaluated in spanwise rotating channel flow and in flat plate boundary layers. The sensitivity to the Reynolds and
rotation numbers is investigated. The results are compared with DNS data.
� 2006 Elsevier Inc. All rights reserved.
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1. Motivation and objectives

Linear eddy-viscosity models are known to be inaccu-
rate in predicting the effect of strong streamline curvature
and frame rotation. There is no shortage of modifications
and adjustments proposed in the literature to correct their
behavior. For example in the work by Shih et al. (1995) the
k–� model is modified by introducing coefficients in the
�-equation that depend on the shear rate and frame rota-
tion. A more consistent redesigning of the �-equation for
flows with rotational effects has been proposed by Haire
and Reynolds (2003). Another recent attempt by Durbin
and Pettersson Reif (2001) consists in the modification of
the eddy-viscosity coefficient (again by introducing depen-
dency on the shear rate and frame rotation). In the latter
case the justification for the choice of the selected func-
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tional dependency comes from the study of solutions of
second-moment models in the case of homogeneous rotat-
ing shear. Although these modifications are shown to pro-
vide encouraging predictions for simple flows with rotation
(namely channel flows), their accuracy for more complex
situations remains unclear. Differential Reynolds stress
models, on the other hand, possess the obvious advantage
that the turbulence production terms and the stress anisot-
ropy are automatically accounted for. Unfortunately, the
difficulties in modeling the stress redistribution terms and
their inherent numerical stiffness make them not amenable
to mainstream use in engineering calculations.

Algebraic Reynolds stress models have received a sub-
stantial amount of attention given the potential benefit of
introducing stress anisotropy in the controlled environment
of an eddy-viscosity closure. Several models have been
devised with various degree of success (Gatski and
Speziale, 1993; Wallin and Johansson, 2002). The basic
idea behind these models is to express the Reynolds stress
tensor as a function of one or more (up to ten) different ten-
sors. This is not different from what is used to derive the so-
called non-linear eddy-viscosity models where additional
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(high-order) terms are added to the Boussinesq relationship
between mean strain and Reynolds stresses. Reynolds and
coworkers (see Reynolds, 1991; Kassinos and Reynolds,
1994; Kassinos et al., 2001) have repeatedly argued that
for adequate modeling and description of rotating turbu-
lence, information about the turbulence structure is crucial.
The Reynolds stresses only characterize the componental-
ity of turbulence, i.e., which velocity components are more
energetic. The turbulent field has much more information
than that contained in the Reynolds stresses, which is
important in presence of rotation, and which is described
by the turbulence structure. For instance, the dimensional-
ity of the flow is important. This carries information about
which directions are favored by the more energetic turbu-
lent eddies: if the turbulent eddies are preferentially aligned
with a given direction, then the dimensionality is smaller
along that direction. In the algebraic structure-based model
(ASBM), hypothetical turbulent eddies are used to bring
awareness of turbulence structure into the turbulence
model. Averaging over an ensemble of eddies produces a
set of one-point statistics, representative of the eddy field,
and a set of equations of state relating the Reynolds stres-
ses to these statistics.

The structure-based approach to build the Reynolds
stress closure has lead in Langer and Reynolds (2003) to
the development of an ASBM in conjunction with a novel

two-equation model based on the transport equation for
turbulent kinetic energy, k, and large scale vorticity x2.
The model has been calibrated for channel flow simulations
and the results have shown excellent agreement with avail-
able DNS data.

The primary objective of this work was to implement the
ASBM in a three-dimensional Reynolds-averaged Navier–
Stokes (RANS) solver to perform simulations of complex
flows. In this work we combine the ASBM Reynolds stress
evaluation with conventional turbulence models, namely
the k–x and v2–f models. Results are presented for channel
flow with and without spanwise rotation. Additionally, the
combination of the ASBM with the v2–f scale equations
was explored in boundary layer flows, now using a para-
bolic flow solver. To achieve the primary objective some
modifications to the original ASBM formulation have been
developed to ease its numerical implementation. In partic-
ular, a scalar diffusivity has been introduced to the
transport equations of the turbulent scalars and a general-
ization of the blocking length scale definition has been
introduced.

2. The turbulence structure tensors

Turbulence structure tensors can be formally defined as
in Kassinos and Reynolds (1994) and Kassinos et al.
(2001). They introduce the turbulent stream-function vec-
tor, w0k, to explore and elaborate concepts of turbulence
structure. From the w0k definition it follows that the vector
stream function at one point is determined by the vorticity
at all points through a Poisson equation
u0i ¼ �ijk
ow0k
oxj

;
ow0k
oxk
¼ 0; ) o2w0i

oxkoxk
¼ �x0i. ð1Þ

The turbulence structure tensors are defined in terms of
one point correlations of vector stream function gradients,
and hence they contain non-local information about the
turbulence

Rij ¼ u0iu
0
j ¼ �ist�jpq

ow0t
oxs

ow0q
oxp

;

Dij ¼
ow0k
oxi

ow0k
oxj

; F ij ¼
ow0i
oxk

ow0j
oxk

;

ð2Þ

where Rij, Dij, and Fij are respectively the Reynolds stress,
the structure dimensionality, and the structure circulicity
tensors. Dij and Fij carry information about the large-scale,
energy-bearing, structure of the turbulence not conveyed by
Rij. Rij measures the componentality of the turbulence. If
the turbulence has one zero component (say u03 ¼ 0), then
it is two-component (2C), but it is not necessarily two-dimen-
sional (2D). If none of the vector stream function compo-
nents varies with x1, then D11 = 0, indicating that the
turbulence is 2D and independent of x1. It need not be 2C
when it is 2D. Similarly, if the large-scale vorticity is entirely
aligned with the x1 axis, then all Fij other than F11 are zero.

For homogeneous turbulence, the contractions of the
structure tensors are all twice the turbulent kinetic energy,
Rii = Dii = Fii = q2 = 2k. Normalized structure tensors are
then defined as

rij ¼ Rij=q2; dij ¼ Dij=q2; f ij ¼ F ij=q2. ð3Þ

Moreover, for homogeneous turbulence, there is a constitu-
tive relationship among the tensors,

rij þ dij þ fij ¼ dij. ð4Þ

Thus only two of the tensors are linearly independent. This
suggests that it could be difficult to model turbulence in
terms of a single one of them as one hopes to do in Rey-
nolds stress transport modeling.

Kassinos et al. (2000) and Poroseva et al. (2002) solve
transport equations for the different structure tensors.
However, there are many tensor components, thus many
transport equations. A simpler approach is sought to bring
in the key structural physics. Here we model the structure
tensors using the simpler concept of turbulent eddies.

3. The structure-based algebraic stress model

The eddy-axis concept (Kassinos and Reynolds, 1994) is
used to relate the Reynolds stress and the structure tensors
to parameters of a hypothetical turbulent eddy field. Each
eddy represents a two-dimensional turbulence field, and is
characterized by an eddy-axis vector, ai. The turbulent
motion associated with this eddy is decomposed in a com-
ponent along the eddy axis, the jetal component, and a
component perpendicular to the eddy axis, the vortical
component. This motion can be further allowed to be flat-
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tened in a direction normal to the eddy axis (a round eddy
being characterized by a random distribution of kinetic
energy around its axis). Averaging over an ensemble of tur-
bulent eddies gives statistical quantities representative of
the eddy field, along with constitutive equations relating
the normalized Reynolds stresses, rij, and turbulence struc-
ture to the statistics of the eddy ensemble,

rij ¼
u0iu
0
j

2k
¼ ð1� /Þ 1

2
ðdij � aijÞ þ /aij

þ ð1� /Þv 1

2
ð1� anmbmnÞdij

�
� 1

2
ð1þ anmbmnÞaij � bij þ ainbnj þ ajnbni

�
þ �cXT

k =X
T

� �
ð�iprapj þ �jprapiÞ

� 1

2
½1� vð1� anmbmnÞ�dkr þ vbkr � vaknbnr

� �
;

ð5Þ

dij ¼
1

2
ðdij � aijÞ þ v � 1

2
ð1� anmbmnÞdij

�
þ 1

2
ð1þ anmbmnÞaij þ bij � ðainbnj þ ajnbniÞ

�
; ð6Þ

where dij is the normalized dimensionality tensor.
The eddy-axis tensor, aij = hV2aiaji, is the energy-

weighted average direction cosine tensor of the eddy axes.
The eddy-axis tensor is determined by the kinematics of
the mean deformation. Eddies tend to become aligned
with the direction of positive strain rate, and they are
rotated kinematically by mean or frame rotation.

Motion around the eddy is called vortical, and motion
along the axis is called jetal. The eddy jetting parameter
/ is the fraction of the eddy energy in the jetal mode,
and (1 � /) is the fraction in the vortical mode. Under irro-
tational mean deformation, eddies remain purely vortical
(/ = 0). Shear produces jetal eddies, and in the limit of infi-
nite rapid distortion (RDT) /! 1 for shear in a non-rotat-
ing frame. For shear in a rotating frame the limiting value
of /, under RDT, ranges from 1 for zero frame rotation to
0 for frame rotation that exactly cancels the mean rotation
in the frame, for which the mean deformation in an inertial
frame is irrotational.

The eddy helix vector ck arises from the correlation
between the vortical and jetal components. Hence ck = 0
for purely vortical turbulence (/ = 0) or for purely jetal
turbulence (/ = 1). Typically ck is aligned with the total
rotation vector XT

k . The eddy-helix vector is the key factor
in setting the shear stress in turbulent fields.

Flattening is used to describe the degree of asymmetry in
the turbulent kinetic energy distribution around an eddy. A
round eddy has no preferential distribution. If the motion
is not axisymmetric around the eddy axis, the eddy is called
flattened. The eddy-flattening tensor, bij, is the energy-
weighted average direction cosine tensor of the flattening
vector. The intensity of the flattening is given by the flatten-
ing parameter, v. Under rapid irrotational deformation in a
fixed frame eddies remain axisymmetric. Rotation tends to
flatten the eddies in planes perpendicular to the rotation
direction.

Following Reynolds et al. (2000), the eddy-axis tensor,
aij, is computed on the analysis frame, where the turbulence
might be at equilibrium or very close to it. The eddy-axis
tensor is computed with no reference to the frame rotation,
as it is only kinematically rotated by it (Kassinos and Rey-
nolds, 1994; Haire and Reynolds, 2003). The evaluation is
divided in two parts. Initially a strained eddy-axis tensor,
as

ij, is evaluated based on the irrotational part of the mean
deformation. Next a rotation operation is applied, sensitiz-
ing the eddy-axis tensor to mean rotation. This procedure
produces eddy-axis tensor states that mimic the limiting
states produced under RDT for different combinations of
mean strain with on-plane mean rotation, while guarantee-
ing realizability of the eddy-axis tensor.

The strained as
ij is given by

as
ij ¼

1

3
dij þ

ðS�ikas
kj þ S�jkas

ki � 2
3
S�mnas

nmdijÞs

a0 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2S�kpS�kqas

pq

q ; ð7Þ

where S�ij ¼ Sij � Skkdij=3 is the traceless strain-rate tensor
with Sij = (oui/oxj + ouj/oxi)/2,s is a time scale (Eq. (21)),
and a0 = 1.6 is a ‘‘slow’’ constant. This gives realizable states
for the eddy-axis tensor under irrotational deformations.

The final expression for the homogeneous eddy-axis ten-
sor, aij (for near-wall regions see Eq. (13)), is obtained by
applying a rotation transformation to the strained eddy-
axis tensor, as

ij,

aij ¼ H ikH jlas
kl; H ij ¼ dij þ h1

Xijffiffiffiffiffiffiffi
X2

pp

q þ h2

XikXkj

X2
pp

; ð8Þ

where X2
pp ¼ XpqXpq, and Xpq is the mean rotation rate ten-

sor. The orthonormality conditions HikHjk = dij and
HkiHkj = dij require

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2 � h2

2=2
q

; ð9Þ

h2 is determined with reference to RDT for combined
homogeneous plane strain and rotation (see Reynolds
et al., 2000; Haire and Reynolds, 2003),

h2 ¼
2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� r
p

Þ
q

if r 6 1

2� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=r

p
Þ

q
if r P 1

8><>: ; ð10Þ

where r ¼ ðapqXqrS
�
rpÞ=ðS�knS�nmamkÞ.

The flattening tensor bij is modeled in terms of the mean
rotation rate vector, Xi, and the frame rotation rate vector,
Xf

i ,a

bij ¼
Xi þ CbX

f
i

� �
Xj þ CbX

f
j

	 

Xk þ CbX

f
k

� �
Xk þ CbX

f
k

� � ; Cb ¼ �1:0. ð11Þ

The helix vector ck is taken as aligned with the total
rotation vector,
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ck ¼ c
XT

kffiffiffiffiffiffiffiffiffiffiffiffi
XT

p XT
p

q ; c ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/ð1� /Þ

1þ v

s
. ð12Þ

Modeling /, b (see Eq. (12)), and v is a crucial part in the
construction of the model. The equations for these scalars
are found by analyzing target turbulent states correspond-
ing to a mean deformation. Throughout model develop-
ment there is a strong effort to make it consistent with
RDT solutions, aiming to improve model dependability
and realizability for a wide range of mean deformations,
as well as to obtain guidance in the functional shape chosen
for the structure parameters. Tentative functional forms
for the structure parameters are thus chosen with reference
to RDT. A set of structure parameter values is chosen to
mimic the isotropic turbulent state (the eddy structure is
expected to consist of axisymmetric (v = 0), vortical
(/ = 0) eddies). Finally interpolation functions (along with
model constants) are chosen to bridge these limiting states
(isotropy and RDT). They are selected specially to match a
canonical state of sheared turbulence, observed in the
log region of a boundary layer. In the resulting model the
structure scalars are parameterized in terms of gm, gf,
and a2, representatives of the ratio of mean rotation to
mean strain, frame rotation to mean strain, and a
measure of anisotropy respectively. Details are given in
Appendix.

As a no-slip wall is approached, the velocity is driven to
zero through the action of viscous forces. Furthermore, the
velocity vector is reoriented into planes parallel to the wall
through an inviscid mechanism (wall blocking) which acts
over distances far larger than the viscous length scale. Thus
the velocity component normal to the wall is driven to zero
faster than the tangential components. In the structure-
based model it is postulated that the eddy orientation shall
also be parallel to the wall. A wall-blocking procedure is
then introduced to reorient the eddies. The structure
parameters are also sensitized to wall blocking, such that
the modeled Reynolds stresses are consistent with the
expected near wall asymptotic behavior.

Following Reynolds et al. (2000), the homogeneous
eddy-axis tensor, ah

ij, is computed based on the homo-
geneous algebraic procedure, Eqs. (7) and (8) (note that
the superscript ‘‘h’’ has been added in the current section).
It is then partially projected onto planes parallel to the
wall,

aij ¼ H ikHjlah
kl; Hik ¼

1

Da
ðdik � BikÞ;

D2
a ¼ 1� ð2� BkkÞah

mnBnm;

ð13Þ

where Hik is the partial-projection operator, and D2
a is such

that the trace of aij remains unity. The blockage tensor Bij

gives the strength and the direction of the projection. If the
wall-normal direction is x2, then B22 is the sole non-zero
component, and varies between 0 (no blocking) far enough
from the wall, to 1 (full blocking) at the wall. Bij is com-
puted by
Bij ¼
U;iU;j
U;kU;k

U if U;kU;k > 0. ð14Þ

If all gradients of U vanish, the denominator in (14) has
been clipped setting effectively Bij to zero.

The blocking parameter, U, is computed by an elliptic
relaxation equation

L2 o2U
oxkoxk

¼ U; L ¼ CL Max
k3=2

e
;Cm

ffiffiffiffi
m3

e
4

r !
ð15Þ

with U = 1 at solid boundaries, and U,n � oU/oxn = 0 at
open boundaries, where xn is the direction normal to the
boundary. The definition of L is inspired by Durbin and
Pettersson Reif (2001). Here Cm = 50, and

CL ¼ 1:0
Ss

S2s2 þ 15
ð16Þ

with S2 = 2SijSji. This form is chosen so as to limit the
growth of L in rotating flows, when e decreases substan-
tially. An overgrown L would enforce too much blocking
on the turbulence structure over too much of the flow.
An alternative solution would follow Pettersson and
Andersson (1997), and add the mean flow viscous dissipa-
tion to e. This would in fact again limit the decay of e near a
stable wall in rotating flows.

To recover proper asymptotic behavior of the Reynolds
stresses, r12 / O(x2) and r22 / Oðx2

2Þ, as the wall at x2 = 0 is
approached, the homogeneous jetal, /h, and helix, ch,
parameters are modified using

/ ¼ 1þ ð/h � 1Þð1� BkkÞ2; ð17Þ
c ¼ chð1� BkkÞ. ð18Þ

A consequence of this approach is that realizability is
automatically satisfied for rij.

4. Rotating channel flow and flat plate boundary layer

computed with conventional turbulence models combined

with ASBM

The steady RANS equations governing the motion of an
incompressible viscous fluid in a Cartesian rotating frame
of reference are given by conservation of mass and momen-
tum as in Greenspan (1968):

oui

oxi
¼ 0; ð19Þ

uj
oui

oxj
þ 2�ijkX

f
juk ¼ �

oP
oxi
þ m

o2ui

oxkoxk
þ o

oxj
�u0iu

0
j

� �
; ð20Þ

where ui is the mean velocity measured in the coordinate
system rotating with constant angular velocity Xf

j, and xj,
P, q, and m represent respectively the position vector,
reduced pressure, density and kinematic viscosity. The
reduced pressure incorporates the centripetal acceleration.

For fully-developed channel flow in a spanwise rotating
frame the mean velocity is given by uj = u(y) where y is the
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wall normal direction. The frame rotation rate vector is
given by Xf

j ¼ Xfdj3 with x3 being the spanwise direction.
The wall-normal mean velocity component vanishes by
continuity for a fully-developed channel flow with zero
velocity at the walls. This simplifies the momentum equa-
tion; only the streamwise direction component, x, needs
to be solved and the term containing the angular velocity
Xf is zero.

The Reynolds stress in Eq. (20) is obtained through the
algebraic equation (5). The complete ASBM model,
described in Langer and Reynolds (2003), includes two sca-
lar transport equations for the turbulent kinetic energy k

and the large-scale turbulent enstrophy x2. The purpose
of these two quantities is to provide the field distribution
of k and of the turbulence time scale s. The latter has the
following relation to k and �:

s2 ¼ k
e

� �2

þ 2:0

ffiffiffi
m
e

r� �2

. ð21Þ

In this work, field distributions of k and s have been
obtained from the k–x model by Wilcox (1993) and v2–f

model by Lien and Durbin (1996). In addition, low-Re

modifications given in Wilcox (1993) for the k–x model
have been considered. For the k–x model, the time scale
is computed as s2 = 1/(b*x)2 + 4.0m/(kxb*) while Eq. (21)
is used directly for v2–f which includes transport equations
for k and �.

The time scale is used to scale the rotation rate tensor,
Xij, and strain rate tensor, Sij, that are obtained from the
mean flow velocity distribution. The blockage tensor Bij

is obtained as described above from an elliptic equation.
The tensors sSij, sXij and Bij as well as k and s and the
frame rotation vector sXf

j provide the necessary informa-
tion for the ASBM Reynolds stresses sij ¼ �u0iu

0
j.

Following Eq. (20), the Reynolds stress enters only the
diffusion term in the momentum equation. In an incom-
pressible RANS flow solver based on a standard SIMPLE
algorithm the diffusion term is usually treated implicitly for
stability. This is straightforward when the Reynolds stress
is computed over the Boussinesq approximation and an
eddy-viscosity is used. With the ASBM procedure the Rey-
nolds stress is computed explicitly and an explicit correc-
tion to the momentum equation is used. For the
implementation of the ASBM procedure in the IBRANS
code by Kalitzin and Iaccarino (2003) the last two terms
in Eq. (20) have been re-written as

o

oxj
ðmþ mn

t Þ
ounþ1

i

oxj

� �
� o

oxj
mn

t

oun
i

oxj
� sn

ij

� �
; ð22Þ

where n is the current iteration. The terms with the eddy-
viscosity are equal to each other when the solution is con-
verged. The eddy-viscosity used is as defined by the k–x or
v2–f model.

The Reynolds stress enters only the production term
Pk = sijoui/oxj in the transport equations of the turbulence
models. The eddy-viscosity is retained in the diffusion terms
and no additional modifications of the turbulence equa-
tions have been performed in respect to the frame rotation.

Haire and Reynolds (2003) also looked at using alterna-
tive scale equations along with an earlier version of the
ASBM, for free shear flows. A few distinctions are present
in the current investigation. Briefly, (i) the turbulent trans-
port term in the scale equations has a tensorial form in
Haire and Reynolds (2003), whilst here a scalar diffusion
model is investigated, for its simplicity makes it possible
to use the ASBM in available CFD packages, (ii) Haire
and Reynolds concentrated on free shear flows. The analy-
sis here regards wall-bounded flows, and (iii) the algebraic
equations that constitute the current ASBM formulation
are different from the earlier version explored by them.

The channel flow computations have been performed
considering a streamwise periodic flow with one cell in
the flow direction. The pressure and velocity components
at the outflow have been copied to the inflow and a source
term has been added to the momentum equation to
account for the pressure loss.

Finally, a parabolic flow solver was introduced to com-
pute two flat plate boundary layers: Spalart (1988) zero
pressure gradient (ZPG) at Reh = 1410, and Spalart and
Watmuff (1993) adverse pressure gradient (APG) boundary
layer.

5. Numerical results

Channel flow simulations in orthogonal mode rotation
have been performed for a variety of Reynolds and rota-
tion numbers. The first objective of these simulations is
to identify the steps necessary to combine the ASB Rey-
nolds stress evaluation and a conventional eddy-viscosity
model. As shown earlier the RANS equations are closed

when the eddy-viscosity is introduced; therefore, the first,
preliminary, step is to use the ASB procedure as a post-pro-
cessing tool to evaluate the Reynolds stresses. Successive
steps consist of introducing different levels of coupling
between ASB and the overall solution procedure; first, only
the mean equations are modified by discarding the eddy-
viscosity and evaluating the divergence of the Reynolds
stresses directly. Finally, a fully coupled solution is
obtained when the Reynolds stresses are also used to close
terms in the equations for turbulent quantities. The results
obtained are summarized in Fig. 1 for the k–x and the v2–f

models in a channel flow without rotation. Not surpris-
ingly, the best match with the experiments is obtained when
the full coupling is employed; it is also very interesting to
note that the use of ASB as a post-processing is already suf-
ficient to obtain the correct level of anisotropy as opposed
to the standard application of the eddy-viscosity models.
This situation is clearly a peculiarity of this specific test
case because the stress anisotropy does not affect the mean
flow transport. Another important observation is that the
inclusion of the ASB stress evaluation in the turbulent
kinetic energy production is necessary to obtain accurate
results. It must be noted that in the original ASBM
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approach by Langer and Reynolds (2003), a tensorial tur-
bulent diffusivity is also included whereas in the present
implementation a scalar coefficient is used.

Fig. 2 shows the effect of the Reynolds number for flow
without rotation. In this case the high- and low-Re ASB k–
x as well as the ASB v2–f models are reported. Here we
added the ASB prefix to the models to indicate that the
Reynolds stresses are evaluated with the ASB procedure.
The latter two produce results that are satisfactory for both
Reynolds numbers whereas the high-Re ASB k–x under-
predicts the peak of the urms in particular for Re = 180.

The application of the fully-coupled approach for the
flow in a channel with rotation is reported in Figs. 3 and
4 for a channel flow at two different rotation numbers.
The rotation number is defined here as Ro = Xf2h/ub where
Xf is the magnitude of the frame rotation rate, h is the half-
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Fig. 2. Channel flow at Re = 395 (upper half) and Re = 180 (lower half).
—: ASB v2–f, – – : ASB low-Re k–x, - - - : ASB high-Re k–x, s : DNS by
Moser et al. (1999).
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Fig. 3. Rotating channel flow at Re = 180 and Ro = 0.22. —: ASB v2–f,
– – : ASB low-Re k–x, - - - : ASB high-Re k–x, – Æ Æ– : ASBM, s : DNS by
Alvelius (1999).
height of the channel and ub is the bulk velocity in the
channel. In these plots DNS data and the original ASBM
are compared to ASB k–x and ASB v2–f predictions. The
asymmetry in the mean velocity profile is properly captured
even for the high rotation case. In addition, the Reynolds
stress anisotropy is remarkably close to the DNS results
at the turbulence-enhanced side of the channel. Notice that
at the suction-side of the channel (lower side in the Figs. 3
and 4) the turbulence intensity is reduced and, eventually,
the turbulent stresses are negligible with respect to the vis-
cous stresses. The difference between the full ASBM
approach and the current combined approach is also very
small especially when v2–f is used.

Further simulations have been performed at a variety of
rotation numbers in the [0–0.77] interval. The results
obtained using the v2–f and the ASB v2–f are presented.
The mean velocity profile and the turbulent kinetic energy
are reported in Figs. 5 and 6, respectively. The current
model and the DNS again agree remarkably well.

Fig. 7 illustrates the behavior of the normalized struc-
ture dimensionality in the channel flow. It is not used in
the present computations, but it is nevertheless instructive
to observe its behavior. In the left, for the fixed frame chan-
nel, the model compares favorably with DNS results, espe-
cially in the region away from the wall. The behavior of the
d11 component is particularly encouraging. It is the smallest
component, indicating the presence of structures preferen-
tially aligned with the streamwise (x1) direction. Further-
more it shows a minimum near the wall, where near-wall
streaks aligned with the flow direction have come to be
expected. Comparing to the figure on the right, in a rotat-
ing channel, it is clear that the dimensionality is little
affected by the frame rotation. It does display an asymme-
1.5
-1

0

1

Ro=0 0.055 0.11 0.22 0.43 0.77

Fig. 5. Velocity profiles for channel flow at Re = 180 and Ro = 0, 0.055,
0.11, 0.22, 0.43 and 0.77; - - - : v2–f, —: ASB v2–f, s : DNS by Alvelius
(1999).
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Fig. 6. Turbulent kinetic energy for channel flow at Re = 180 and Ro = 0,
0.055, 0.11, 0.22, 0.43 and 0.77; - - - : v2–f, —: ASB v2–f, s : DNS by
Alvelius (1999).
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try, but this results directly from the asymmetry in the
mean velocity gradient. There are no dramatic changes as
in the Reynolds stresses.

Figs. 8 and 9 show comparisons of the ASB v2–f with
DNS of a ZPG boundary layer by Spalart (1988) and with
DNS of an APG boundary layer by Spalart and Watmuff
(1993), respectively. Comparisons are made using wall
units, and in the APG case, only one station is reported,
2/3 of the way through what Spalart and Watmuff call
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Fig. 8. ZPG boundary layer at Reh = 1410; - - - : ASB v2–f, —: DNS by
Spalart (1988).
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Fig. 9. APG boundary layer at x = 0.80; - - - : ASB v2–f, —: DNS by
Spalart and Watmuff (1993).
the ‘‘comparison region’’ , x = 0.80. The anisotropies of
the turbulence intensities predicted with the ASB v2–f are
in very good agreement with the DNS.

6. Conclusions and future plans

The algebraic structure-based model has been used in
this work in combination with conventional linear eddy-
viscosity models to evaluate the Reynolds stresses in the
RANS equations. This approach has proven to be very
accurate in predicting the mean flow and the stress anisot-
ropy in rotating channel flow as opposed to the baseline
eddy-viscosity predictions that are typically insensitive to
frame rotation. Several modifications, that have not been
reported in this paper, have been introduced to the ASBM
model in order to facilitate its application to more general
flow problems. In particular, a scalar turbulent diffusion
coefficient is introduced in lieu of the original tensorial dif-
fusivity, in the transport equations for the turbulence sca-
lars k, �, etc.

The current combination of the ASB Reynolds stress
evaluation with the v2–f and k–x models is carried out in
a full three-dimensional flow solver. However, only channel
flow simulations were performed. Preliminary computa-
tions of flows in square-ducts appeared encouraging.
Results for ZPG and APG boundary layer flows computed
with a separate parabolic solver are also encouraging.
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Appendix

The structure scalars /, b, and v, respectively the eddy
jetting parameter, the eddy jetal-helix correlation parame-
ter, and the eddy flattening parameter, are a crucial part
in modeling the structure tensors. Langer and Reynolds
(2003) discuss their construction in detail; the final forms
are summarized here. They are parameterized in terms of
gm, gf, and a2, representatives of the ratio of mean rotation
to mean strain, frame rotation to mean strain, and a mea-
sure of anisotropy respectively. These in turn are defined in

terms of bX2
ms2; bX2

Ts2, and bS 2s2; measures of the strength of
the mean rotation, total rotation, and mean strain respec-
tively. s represents a time scale of the turbulence (Eq. (21))

gm �

ffiffiffiffiffiffiffibX2
mbS 2

s
; gf � gm � signðX Þ

ffiffiffiffiffiffiffibX2
TbS 2

s
; a2 � apqapq;

bX2
m � �aijXikXkj; bX2

T � �aijX
T
ikX

T
kj;bS 2 � aijSikSkj; X � aijX

T
ikSkj:

The structure parameters are then defined with the help
of auxiliary functions (see Table 1)



Table 1
Structure scalars: auxiliary functions in Eqs. (23)–(25)

gm = 1 /1 b1 v1

gf < 0 gf�1
3gf�1 1� b0

gf

ð1�a2Þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 1=3Þ

p	 
h i�1
1
2 b1

0 < gf < 1 (1 � gf) 1 1
2þ 1

2 1� ð1�gf Þ2
1þb1gf=ð1�a2Þ

h i
gf > 1 gf�1

3gf�1 1þ b2
ðgf�1Þ
ð1�a2Þ gf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 1=3Þ

ph i�1
1� ð1�b1Þðgf�1Þ

b3ð1�a2Þþðgf�1Þ

gm = 0 /0 b0 v0

gf 6
ffiffiffi
3
p

=4
0:145 ð2gf Þ2

3=4 �
ð2gf Þ2

3=4

	 
9
� �

1 � 0:342 ð2gf Þ2
3=4 þ ð1� 0:342Þ ð2gf Þ2

3=4

	 
6
� �

gf >
ffiffiffi
3
p

=4 (1 + v0)/3 �v0 � 1þ b4
ðgf�

ffiffi
3
p

=4Þ
ð1�a2Þ gf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 1=3Þ

ph i�1

gm /* b* v*

< 1 /0ðg�Þ þ ½/1ðg�Þ � /0ðg�Þ�g2
m b0ðg�Þ þ ½b1ðg�Þ � b0ðg�Þ�g2

m v0ðg�Þ þ ½v1ðg�Þ � v0ðg�Þ�g4
m

>1 1=3þ ð/1ðgf ;a
2Þ�1=3Þ

1þðgm�1Þ=ð1�a2Þ
b1ðgf ;a

2Þ
1þðgm�1Þ=ð1�a2Þ

v1ðgf ;a
2Þ

1þðgm�1Þ=ð1�a2Þ

b0 = 1.0, b1 = 100, b2 = 0.8, b3 = 1.0, b4 = 1.0, g� � �gm þ ½4=
ffiffiffi
3
p
þ ð2� 4=

ffiffiffi
3
p
Þgm�gf .
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/ ¼ /� � ðgm � gfÞ
2

ðgm � gfÞ
2 þ ð1� a2Þ2

 !

�
jgm � gf j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ða2 � 1

3
Þ

q
jgm � gf j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ða2 � 1

3
Þ

q
þ p0ð1� a2Þ

0B@
1CA; ð23Þ

b ¼ b�; ð24Þ

v ¼ v� � 3

2
a2 � 1

3

� �� �p1

. ð25Þ
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